Traffic modeling, prediction, and congestion control for high-speed networks: a fuzzy AR approach
نویسندگان
چکیده
In general, high-speed network traffic is a complex, nonlinear, nonstationary process and is significantly affected by immeasurable parameters and variables. Thus, a precise model of this process becomes increasingly difficult as the complexity of the process increases. Recently, fuzzy modeling has been found to be a powerful method to effectively describe a real, complex, and unknown process with nonlinear and time-varying properties. In this study, a fuzzy autoregressive (fuzzy-AR) model is proposed to describe the traffic characteristics of high-speed networks. The fuzzy-AR model approximates a nonlinear time-variant process with a combination of several linear local AR processes using a fuzzy clustering method. We propose that the use of this fuzzy-AR model has greater potential for congestion control of packet network traffic. The parameter estimation problem in fuzzy-AR modeling is treated by a clustering algorithm developed from actual traffic data in high-speed networks. Based on adaptive AR-prediction model and queueing theory, a simple congestion control scheme is proposed to provide an efficient traffic management for high-speed networks. Finally, using the actual ethernet-LAN packet traffic data, several examples are given to demonstrate the validity of this proposed method for high-speed network traffic control.
منابع مشابه
A neuro-fuzzy approach to vehicular traffic flow prediction for a metropolis in a developing country
Short-term prediction of traffic flow is central to alleviating congestion and controlling the negative impacts of environmental pollution resulting from vehicle emissions on both inter- and intra-urban highways. The strong need to monitor and control congestion time and costs for metropolis in developing countries has therefore motivated the current study. This paper establishes the applicatio...
متن کاملFuzzy-AR Modeling for Dynamic Effective Bandwidth Estimation in High-Speed Networks
In this paper a fuzzy autoregressive (AR) model described in [1] is used to model and predict highspeed network traffic. This model approximates a complex nonlinear time-variant process by combining linear local autoregressive processes using a fuzzy clustering algorithm. We propose a method to estimate the traffic effective bandwidth at regular intervals, assuming the network traffic can be de...
متن کاملAdaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملImprovement of the mechanism of congestion avoidance in mobile networks
Mobile ad hoc network congestion control is a significant problem. Standard mechanism for congestion control (TCP), the ability to run certain features of a wireless network, several mutations are not common. In particular, the enormous changes in the network topology and the joint nature of the wireless network. It also creates significant challenges in mobile ad hoc networks (MANET), density ...
متن کاملA Fuzzy Based Approach for Rate Control in Wireless Multimedia Sensor Networks
Wireless Multimedia Sensor Networks (WMSNs) undergo congestion when a link (or a node) becomes overpopulated in terms of incoming packets. In WMSNs this happens especially in upstream nodes where all incoming packets meet and directed to the sink node. Congestion in networks, if not handled properly, might lead to congestion collapse which deteriorates the quality of service (QoS). Therefore, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Fuzzy Systems
دوره 8 شماره
صفحات -
تاریخ انتشار 2000